120 research outputs found

    Coevolution of Generative Adversarial Networks

    Full text link
    Generative adversarial networks (GAN) became a hot topic, presenting impressive results in the field of computer vision. However, there are still open problems with the GAN model, such as the training stability and the hand-design of architectures. Neuroevolution is a technique that can be used to provide the automatic design of network architectures even in large search spaces as in deep neural networks. Therefore, this project proposes COEGAN, a model that combines neuroevolution and coevolution in the coordination of the GAN training algorithm. The proposal uses the adversarial characteristic between the generator and discriminator components to design an algorithm using coevolution techniques. Our proposal was evaluated in the MNIST dataset. The results suggest the improvement of the training stability and the automatic discovery of efficient network architectures for GANs. Our model also partially solves the mode collapse problem.Comment: Published in EvoApplications 201

    Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins ('beef' and 'cone-in-cone')

    No full text
    International audienceBedding-parallel fibrous veins ('beef' and 'cone-in-cone') are common to a number of sedimentary basins, especially those containing black shale. The type locality is SW England. The commonest mineral in the fibres is calcite. The fibres indicate vertical opening, against the force of gravity. In the past, this has been attributed to fluid overpressure. However, a simple analysis, based on Von Terzaghi's concepts, leads to the conclusion that, for the fractures to be horizontal, either the rock must be anisotropic, or it must be subject to horizontal compression. By means of a more complete analysis, supported by physical models, we show that horizontal fractures are to be expected, even if the rock is isotropic and there are no tectonic stresses. Upward fluid flow, in response to an overpressure gradient, imparts seepage forces to all elements of the solid framework. The seepage forces counteract the weight of the rock, and even surpass it, generating a tensile effective stress. The process may lead, either to tensile hydraulic fracturing, or to dilatant shear failure. We suggest that these two failure modes, and the availability of suitable solutes, explain the frequent occurrence of 'beef' and 'cone-in-cone' respectively

    Multisensory Oddity Detection as Bayesian Inference

    Get PDF
    A key goal for the perceptual system is to optimally combine information from all the senses that may be available in order to develop the most accurate and unified picture possible of the outside world. The contemporary theoretical framework of ideal observer maximum likelihood integration (MLI) has been highly successful in modelling how the human brain combines information from a variety of different sensory modalities. However, in various recent experiments involving multisensory stimuli of uncertain correspondence, MLI breaks down as a successful model of sensory combination. Within the paradigm of direct stimulus estimation, perceptual models which use Bayesian inference to resolve correspondence have recently been shown to generalize successfully to these cases where MLI fails. This approach has been known variously as model inference, causal inference or structure inference. In this paper, we examine causal uncertainty in another important class of multi-sensory perception paradigm – that of oddity detection and demonstrate how a Bayesian ideal observer also treats oddity detection as a structure inference problem. We validate this approach by showing that it provides an intuitive and quantitative explanation of an important pair of multi-sensory oddity detection experiments – involving cues across and within modalities – for which MLI previously failed dramatically, allowing a novel unifying treatment of within and cross modal multisensory perception. Our successful application of structure inference models to the new ‘oddity detection’ paradigm, and the resultant unified explanation of across and within modality cases provide further evidence to suggest that structure inference may be a commonly evolved principle for combining perceptual information in the brain

    Global variation in the cost of increasing ecosystem carbon

    Get PDF
    Slowing the reduction, or increasing the accumulation, of organic carbon stored in biomass and soils has been suggested as a potentially rapid and cost-effective method to reduce the rate of atmospheric carbon increase(1). The costs of mitigating climate change by increasing ecosystem carbon relative to the baseline or business-as-usual scenario has been quantified in numerous studies, but results have been contradictory, as both methodological issues and substance differences cause variability(2). Here we show, based on 77 standardized face-to-face interviews of local experts with the best possible knowledge of local land-use economics and sociopolitical context in ten landscapes around the globe, that the estimated cost of increasing ecosystem carbon varied vastly and was perceived to be 16-27 times cheaper in two Indonesian landscapes dominated by peatlands compared with the average of the eight other landscapes. Hence, if reducing emissions from deforestation and forest degradation (REDD+) and other land-use mitigation efforts are to be distributed evenly across forested countries, for example, for the sake of international equity, their overall effectiveness would be dramatically lower than for a cost-minimizing distribution.Peer reviewe

    A Prospective Three-Year Cohort Study of the Epidemiology and Virology of Acute Respiratory Infections of Children in Rural India

    Get PDF
    Acute respiratory infection (ARI) is a major killer of children in developing countries. Although the frequency of ARI is similar in both developed and developing countries, mortality due to ARI is 10-50 times higher in developing countries. Viruses are common causes of ARI among such children, yet the disease burden of these infections in rural communities is unknown.A prospective longitudinal study was carried out in children enrolled from two rural Indian villages at birth and followed weekly for the development of ARI, classified as upper respiratory infection, acute lower respiratory infection (ALRI), or severe ALRI. Respiratory syncytial virus (RSV), influenza, parainfluenza viruses and adenoviruses in nasopharyngeal aspirates were detected by direct fluorescent antibody testing (DFA) and, in addition, centrifugation enhanced culture for RSV was done. 281 infants enrolled in 39 months and followed until 42 months. During 440 child years of follow-up there were 1307 ARIs, including 236 ALRIs and 19 severe ALRIs. Virus specific incidence rates per 1000 child years for RSV were total ARI 234, ALRI 39, and severe ALRI 9; for influenza A total ARI 141, ALRI 39; for INF B total ARI 37; for PIV1 total ARI 23, for PIV2 total ARI 28, ALRI 5; for parainfluenza virus 3 total ARI 229, ALRI 48, and severe ALRI 5 and for adenovirus total ARI 18, ALRI 5. Repeat infections with RSV were seen in 18 children.RSV, influenza A and parainfluenza virus 3 were important causes of ARI among children in rural communities in India. These data will be useful for vaccine design, development and implementation purposes

    Haptic Edge Detection Through Shear

    Get PDF
    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals

    Continuous Evolution of Statistical Estimators for Optimal Decision-Making

    Get PDF
    In many everyday situations, humans must make precise decisions in the presence of uncertain sensory information. For example, when asked to combine information from multiple sources we often assign greater weight to the more reliable information. It has been proposed that statistical-optimality often observed in human perception and decision-making requires that humans have access to the uncertainty of both their senses and their decisions. However, the mechanisms underlying the processes of uncertainty estimation remain largely unexplored. In this paper we introduce a novel visual tracking experiment that requires subjects to continuously report their evolving perception of the mean and uncertainty of noisy visual cues over time. We show that subjects accumulate sensory information over the course of a trial to form a continuous estimate of the mean, hindered only by natural kinematic constraints (sensorimotor latency etc.). Furthermore, subjects have access to a measure of their continuous objective uncertainty, rapidly acquired from sensory information available within a trial, but limited by natural kinematic constraints and a conservative margin for error. Our results provide the first direct evidence of the continuous mean and uncertainty estimation mechanisms in humans that may underlie optimal decision making

    Management of congestive heart failure: a gender gap may still exist. Observations from a contemporary cohort

    Get PDF
    BACKGROUND: Unlike other cardiovascular diseases the incidence and prevalence of congestive heart failure (CHF) continues to increase. While gender differences in coronary artery disease have been well described, to date, there has been a relative paucity of similar data in patients with CHF. We conducted a pilot study to evaluate the profile and management of patients with CHF at a tertiary care centre to determine if a gender difference exists. METHODS: A chart review was performed at a tertiary care centre on consecutive patients admitted with a primary diagnosis of CHF between June 1997 and 1998. Co-morbidity, diagnostic investigations, and management of CHF were recorded. Comparisons between male and female patients were conducted. RESULTS: One hundred and forty five patients were reviewed. There were 80 male (M) and 65 female (F) patients of similar age [71.6 vs. 71.3 (M vs. F), p = NS]. Male patients were more likely to have had a previous myocardial infarction (66% vs. 35%, p < 0.01) and revascularization (41% vs. 20%, p < 0.05), and had worse left ventricular ejection fraction (LVEF) than women, [median LVEF 3 vs. 2 (M vs. F), p < 0.01]. Male patients were more likely to have a non-invasive assessment of left ventricular (LV) function [85% vs. 69%, (M vs. F), p < 0.05]. A logistic regression analysis suggests that amongst those without coronary disease, males were more likely to receive non-invasive testing. There were no differences in the use of prescribed medications, in this cohort. CONCLUSIONS: This pilot study demonstrated that there seem to be important gender differences in the profile and management of patients with CHF. Importantly women were less likely to have an evaluation of LV function. As assessment of LV function has significant implications on patient management, this data justifies the need for larger studies to assess gender differences in CHF profile and treatment

    Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    Get PDF
    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a thorough revision, which cannot be achieved by considering morphology alone or relying on a taxon sampling based on the current classification below the subclass level
    • …
    corecore